On the Non-integrability of the Popowicz Peakon System

نویسندگان

  • Andrew N.W. Hone
  • Michael V. Irle
  • MICHAEL IRLE
چکیده

We consider a coupled system of Hamiltonian partial differential equations introduced by Popowicz, which has the appearance of a two-field coupling between the Camassa-Holm and Degasperis-Procesi equations. The latter equations are both known to be integrable, and admit peaked soliton (peakon) solutions with discontinuous derivatives at the peaks. A combination of a reciprocal transformation with Painlevé analysis provides strong evidence that the Popowicz system is non-integrable. Nevertheless, we are able to construct exact travelling wave solutions in terms of an elliptic integral, together with a degenerate travelling wave corresponding to a single peakon. We also describe the dynamics of N-peakon solutions, which is given in terms of a Hamiltonian system on a phase space of dimension 3N .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-peakon solutions of the Degasperis–Procesi equation

We present an inverse scattering approach for computing n-peakon solutions of the Degasperis–Procesi equation (a modification of the Camassa– Holm (CH) shallow water equation). The associated non-self-adjoint spectral problem is shown to be amenable to analysis using the isospectral deformations induced from the n-peakon solution, and the inverse problem is solved by a method generalizing the c...

متن کامل

A New Integrable Equation with Peakon Solutions

We consider a new partial differential equation, of a similar form to the Camassa-Holm shallow water wave equation, which was recently obtained by Degasperis and Procesi using the method of asymptotic integrability. We prove the exact integrability of the new equation by constructing its Lax pair, and we explain its connection with a negative flow in the Kaup-Kupershmidt hierarchy via a recipro...

متن کامل

FUZZY GOULD INTEGRABILITY ON ATOMS

In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...

متن کامل

R-matrix for a geodesic flow associated with a new integrable peakon equation

We use the r-matrix formulation to show the integrability of geodesic flow on an N -dimensional space with coordinates qk, with k = 1, ..., N , equipped with the co-metric gij = e−|qi−qj |(2 − e−|qi−qj |). This flow is generated by a symmetry of the integrable partial differential equation (pde) mt + umx + 3mux = 0, m = u − αuxx (α is a constant). This equation – called the Degasperis-Procesi (...

متن کامل

0 On billiard weak solutions of nonlinear PDE ’ s and Toda flows ∗

A certain class of partial differential equations possesses singular solutions having discontinuous first derivatives (“peakons”). The time evolution of peaks of such solutions is governed by a finite dimensional completely integrable system. Explicit solutions of this system are constructed by using algebraic-geometric method which casts it as a flow on an appropriate Riemann surface and reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008